
18-661: Introduction to ML for Engineers

Python

Spring 2022

Tianshu Huang, ECE – Carnegie Mellon University

Why Python?

Python is not:

• The first mover: R is an implementation of S created circa 1976,

while python was released 1991. R is still very popular in statistics.

• The ideal implementation: Julia is currently being developed, and is

essentially Python but better in every way technically.

• The most popular: compared to other dynamically typed scripting

languages, JavaScript is significantly more popular (67.7%) than

Python (44.1%) according to the 2021 StackOverflow developer

survey.

1

Why Python?

Python is not:

• The first mover: R is an implementation of S created circa 1976,

while python was released 1991. R is still very popular in statistics.

• The ideal implementation: Julia is currently being developed, and is

essentially Python but better in every way technically.

• The most popular: compared to other dynamically typed scripting

languages, JavaScript is significantly more popular (67.7%) than

Python (44.1%) according to the 2021 StackOverflow developer

survey.

1

Why Python?

Python is not:

• The first mover: R is an implementation of S created circa 1976,

while python was released 1991. R is still very popular in statistics.

• The ideal implementation: Julia is currently being developed, and is

essentially Python but better in every way technically.

• The most popular: compared to other dynamically typed scripting

languages, JavaScript is significantly more popular (67.7%) than

Python (44.1%) according to the 2021 StackOverflow developer

survey.

1

Why Python?

Python:

• is fast to develop and very readable

• is dynamically typed and easy to debug

• can be extended using other languages (usually C/C++)

• is reasonably performant (when using libraries)

• can run in development as well as deployed environments

Most importantly, Python has strong community support and extensive

tooling for Machine Learning ...

Python is the standard for Machine Learning.

2

Why Python?

Python:

• is fast to develop and very readable

• is dynamically typed and easy to debug

• can be extended using other languages (usually C/C++)

• is reasonably performant (when using libraries)

• can run in development as well as deployed environments

Most importantly, Python has strong community support and extensive

tooling for Machine Learning ...

Python is the standard for Machine Learning.

2

Outline

Disclaimer: while this lecture will be helpful when working on the

homework, it will not be directly included on your homework or exams.

1. Python Review: Basics and Tools

2. Better Python: Writing “Pythonic” Code

3. Faster Python: Understanding Python Performance

A jupyter notebook including code used to generate examples shown in

the slides can be found here (download or choose “Open with Google

Colaboratory”).

3

https://drive.google.com/file/d/1dM81MRxklpA42xvXi7yxxnNgEVvQmE9N/view?usp=sharing

Python Review: Basics and Tools

Data Types: Primitives

Numerical Primitives:

• float: standard IEEE 64-bit floating point number

• complex: 64-bit real and imaginary components

• int: bignum, with starting size 32 bits (usually);

cannot overflow

Array-like Primitives:

• str: fixed-size char array

• bytes: fixed-size byte array (immutable)

4

Data Types: Booleans

Special Primitives: None, True, False

• These “special objects” are reused: there is

only one “True” and “False” object in all of

cPython, and all booleans are just pointers to

these canonical boolean objects.

• We can check this using the “is” keyword,

which tells you whether two variables point to

the same object in memory.

Note: this behavior also applies to some other

python objects such as small integers.

5

Data Types: Booleans

Special Primitives: None, True, False

• These “special objects” are reused: there is

only one “True” and “False” object in all of

cPython, and all booleans are just pointers to

these canonical boolean objects.

• We can check this using the “is” keyword,

which tells you whether two variables point to

the same object in memory.

Note: this behavior also applies to some other

python objects such as small integers.

5

Data Types: Arrays

Array-like:

• list: exponentially over-allocated arrays

with growth factor 9
8n + 6, rounded down

to the nearest 8. Elements can be any

type.

• bytearray: resizable and mutable bytes

• tuple: fixed-length, immutable array

6

Array Slicing

Array-like data types as well as array-like

primitives can be “sliced” using

array[start:end:stride]

where start defaults to 0, end defaults to -1,

and stride defaults to 1.

7

Data Types: Maps

Map-like:

• dict: standard hash table.

• set: a key-only dict for checking membership

Keys can have any immutable data type (numerical, string, bytes, tuple).

8

Warning: Elements are References

Python data structures only contain references to their elements!

9

Iterators

Loops in python do not use C-like

for(init, condition, update) {}

loops. Instead, loops use iterators that

encapsulate this logic:

• for i in range(start, stop, step)

• for element in example list

• for character in example string

• for key in example dict

• for key, value in example dict.items()

10

Tools: Jupyter Notebook, Google Colab

11

Tools: Libraries

The “Scipy Stack”:

• numpy: vectors, matrices, arrays, and operations involving them

• pandas: dealing with tabular data, usually CSVs

• matplotlib: plotting; originally started as a matlab clone

• and others!

Machine Learning Libraries:

• sklearn: numpy-based classical machine learning methods

• pytorch (also tensorflow, JAX): will be covered in week 11

• statsmodels: statistical models (equivalent of many R packages);

not used in this course

12

Tools: Libraries

The “Scipy Stack”:

• numpy: vectors, matrices, arrays, and operations involving them

• pandas: dealing with tabular data, usually CSVs

• matplotlib: plotting; originally started as a matlab clone

• and others!

Machine Learning Libraries:

• sklearn: numpy-based classical machine learning methods

• pytorch (also tensorflow, JAX): will be covered in week 11

• statsmodels: statistical models (equivalent of many R packages);

not used in this course

12

Numpy

Numpy adds Numpy Arrays,

a new primitive which

contains an n-dimensional

arrays where each element

has the same data type.

These data types correspond

to primitives supported by

hardware.

13

https://numpy.org/doc/stable/reference/arrays.scalars.html

Numpy

Common operations:

np.random.random Random array with elements Unif(0, 1)

np.random.unif Random array from uniform distribution

np.eye Identity matrix

np.zeros Zero matrix

np.ones Ones matrix

np.arange Equivalent to np.array(range(.))

np.linspace Linear space; evenly spaced points

np.load Load array from file

np.save Save single array to file

np.savez Save multiple arrays (keyword args)

np.dot Dot product

np.matmul Matrix multiplication

Please refer to the Numpy Documentation.

14

https://numpy.org/doc/stable/reference/index.html

Matplotlib

15

Better Python: Writing

“Pythonic” Code

PEP-8

Install a Linter.

• VSCode: the official Python

extension includes everything.

• Jupyter Notebook: make sure

you have pycodestyle and

pycodestyle magic, then:

%load_ext pycodestyle_magic

%pycodestyle_on

As a bonus, also enable pydocstyle!

16

Functions

Functions can take positional and

keyword arguments.

• Extra positional arguments are

used to fill keyword arguments

in order

• Keyword arguments that are

not provided use default values.

Functions (as well as methods and

objects) can include a “docstring.”

17

*args and **kwargs

Instead of having to write out every single argument, we can pass them

programmatically!

• *args: collapses a list of positional args.

• **kwargs: collapses a dict of keyword args.

Example: argument passthrough

18

Classes

19

Classes

19

Classes

19

Hidden Attributes

20

Comprehension

• List:

list_comprehension = [

x for x in iterator

if condition

]

• Dict:

dict_comprehension = {

k: v

for k, v in

iterator

}

21

Modules: Files

Python files can be imported as modules by scripts (or jupyter

notebooks!) which have that file in the same directory.

22

Modules: Directories

Directories can be also made into

modules containing other files by

including a “ init .py” file.

General guidelines:

• If scrolling up and down gets

annoying, you should probably

split the file up.

• Modules can go multiple levels

down (useful for larger

projects).

• If using Juypter Notebook, put

“core” code into a module, and

import this into the notebook

to run your experiments.

23

Faster Python: Understanding

Python Performance

CPython

Everything in CPython is a PyObject, which contains a reference count,

type, and contents.

/** Definition has been simplified for clarity. */

typedef struct {

/** Reference count */

Py_ssize_t ob_refcnt;

/** Object type */

struct _typeobject *ob_type;

/** Actual data extends below */

void *buf;

} PyObject;

Source: https://svn.python.org/projects/python/trunk/Include/object.h

24

https://svn.python.org/projects/python/trunk/Include/object.h

Reference Counting

// Note: these definitions are actually macros

// Implementations have been simplified for clarity

void Py_INCREF(PyObject *op) {

op->ob_refcnt++;

}

void Py_DECREF(PyObject *op) {

if (--op->ob_refcnt != 0) {

// Raise error if ob_refcnt < 0

} else {

_Py_Dealloc(op);

}

}

25

Interpreter Overhead

// Pseudocode for c = a + b.

// Assume a has type int

allocate c

c.refcount = 1

if b.type == int:

c.type = int

c.value = a.value + b.value

else:

c.type = float

a_float = (float) a.value

c.value = a_float + b.value

a.refcount -= 1

b.refcount -= 1

return c

Assume that a and b are

provided dynamically (cannot

determine types while parsing).

Rough cost, not including

intermediate pointers:

• 3-4 arithmetic operations:

add, possibly cast, update

refcount

• 6 values read: refcount,

type, and value for a and b

• 5 values written: refcount

for a, b, and c, value and

type of c

26

Interpreter Overhead

// Pseudocode for c = a + b.

// Assume a has type int

allocate c

c.refcount = 1

if b.type == int:

c.type = int

c.value = a.value + b.value

else:

c.type = float

a_float = (float) a.value

c.value = a_float + b.value

a.refcount -= 1

b.refcount -= 1

return c

Assume that a and b are

provided dynamically (cannot

determine types while parsing).

Rough cost, not including

intermediate pointers:

• 3-4 arithmetic operations:

add, possibly cast, update

refcount

• 6 values read: refcount,

type, and value for a and b

• 5 values written: refcount

for a, b, and c, value and

type of c

26

Global Interpreter Lock (GIL)

Because reference counting is not atomic, CPython has a global

interpreter lock which can only be released by Python C API functions

that promise not to modify any reference counts.

• Since reference counts are manipulated so often (accounts for 5-10%

of execution time!), the GIL is held by default and must be explicitly

released by Python C API functions. Source:

https://www.caichinger.com/blog/2015/05/23/python atomic refcounting slowdown/

• It’s not worth it to release the GIL for small scalar operations.

This forces code seeking to leverage multicore computers to create

processes (multiprocessing) instead of threads (multithreading)!

27

https://www.caichinger.com/blog/2015/05/23/python_atomic_refcounting_slowdown/

Global Interpreter Lock (GIL)

Because reference counting is not atomic, CPython has a global

interpreter lock which can only be released by Python C API functions

that promise not to modify any reference counts.

• Since reference counts are manipulated so often (accounts for 5-10%

of execution time!), the GIL is held by default and must be explicitly

released by Python C API functions. Source:

https://www.caichinger.com/blog/2015/05/23/python atomic refcounting slowdown/

• It’s not worth it to release the GIL for small scalar operations.

This forces code seeking to leverage multicore computers to create

processes (multiprocessing) instead of threads (multithreading)!

27

https://www.caichinger.com/blog/2015/05/23/python_atomic_refcounting_slowdown/

Global Interpreter Lock (GIL)

Because reference counting is not atomic, CPython has a global

interpreter lock which can only be released by Python C API functions

that promise not to modify any reference counts.

• Since reference counts are manipulated so often (accounts for 5-10%

of execution time!), the GIL is held by default and must be explicitly

released by Python C API functions. Source:

https://www.caichinger.com/blog/2015/05/23/python atomic refcounting slowdown/

• It’s not worth it to release the GIL for small scalar operations.

This forces code seeking to leverage multicore computers to create

processes (multiprocessing) instead of threads (multithreading)!

27

https://www.caichinger.com/blog/2015/05/23/python_atomic_refcounting_slowdown/

Global Interpreter Lock (GIL)

Because reference counting is not atomic, CPython has a global

interpreter lock which can only be released by Python C API functions

that promise not to modify any reference counts.

• Since reference counts are manipulated so often (accounts for 5-10%

of execution time!), the GIL is held by default and must be explicitly

released by Python C API functions. Source:

https://www.caichinger.com/blog/2015/05/23/python atomic refcounting slowdown/

• It’s not worth it to release the GIL for small scalar operations.

This forces code seeking to leverage multicore computers to create

processes (multiprocessing) instead of threads (multithreading)!

27

https://www.caichinger.com/blog/2015/05/23/python_atomic_refcounting_slowdown/

Memory Access

Many common operations such as matrix/vector multiplication are

dominated by memory access time.

• Memory is “opened” one row at a time (512B - 2KB)

• Memory is loaded into cache one “line” at a time (64 bytes)

If we access memory randomly instead of sequentially, we have to throw

away a lot of work!

28

Vectorization: Numpy

What is a numpy array?

• ndarray.dtype: data type, i.e. float32, int64

• ndarray.data: data buffer; usually row-major, i.e.

data[i, j] = *(data + i * num_columns + j);

• ndarray.shape: array dimensions

• ndarray.strides: how many elements to skip to get to the next:

data[i] = *(data + i * stride);

Operations on numpy arrays are vectorized: operations are applied to

the whole array instead of individual elements.

29

Why Vectorize?

Multithreading:

• Parallelize without paying process overhead

• Large vectors spend more time in the C API function, which makes

releasing the GIL worth it

Python interpreter:

• Reduce interpreter overhead: the entire vector shares the same

PyObject, so memory management and type checking only has to

happen once

Architecture:

• Reduce instruction decode overhead with SIMD vector instructions

(AVX512)

• Make caching more efficient: vectors usually* occupy continuous

memory

30

Why Vectorize?

Multithreading:

• Parallelize without paying process overhead

• Large vectors spend more time in the C API function, which makes

releasing the GIL worth it

Python interpreter:

• Reduce interpreter overhead: the entire vector shares the same

PyObject, so memory management and type checking only has to

happen once

Architecture:

• Reduce instruction decode overhead with SIMD vector instructions

(AVX512)

• Make caching more efficient: vectors usually* occupy continuous

memory

30

Why Vectorize?

Multithreading:

• Parallelize without paying process overhead

• Large vectors spend more time in the C API function, which makes

releasing the GIL worth it

Python interpreter:

• Reduce interpreter overhead: the entire vector shares the same

PyObject, so memory management and type checking only has to

happen once

Architecture:

• Reduce instruction decode overhead with SIMD vector instructions

(AVX512)

• Make caching more efficient: vectors usually* occupy continuous

memory

30

Vectorization Example

31

Vectorization Example

31

Vectorization Example

31

Vectorization Example

31

*: Cache Architecture

Physical caches do not operate like software least recently used (LRU)

caches; they are set associative.

• Searching for matches across an entire cache is very expensive, so

instead each memory address is restricted to a “set” of 8-16 (i.e.

Zen 2 L1: 8 lines) cache locations that it can occupy.

• If the cache size is 64KB (i.e. Zen 2 L1), this means every

64KB cache

8 way
= 8192 bytes = 2048 floats

will correspond to the same set.

If we read just a few bytes over and over again from different lines in the

same set, we will “clobber” the cache!

32

*: Cache Architecture

Physical caches do not operate like software least recently used (LRU)

caches; they are set associative.

• Searching for matches across an entire cache is very expensive, so

instead each memory address is restricted to a “set” of 8-16 (i.e.

Zen 2 L1: 8 lines) cache locations that it can occupy.

• If the cache size is 64KB (i.e. Zen 2 L1), this means every

64KB cache

8 way
= 8192 bytes = 2048 floats

will correspond to the same set.

If we read just a few bytes over and over again from different lines in the

same set, we will “clobber” the cache!

32

*: Cache Architecture

Numpy strided array access is not continuous memory.

33

Example

Runtime Comparison:

Native ≈ Numpy dense (15us)

< Numpy strided (37us ≈ 2.5x)

< Python iterator (753us ≈ 50x)

< Python naive (1234us ≈ 80x)

Vectorize, vectorize, vectorize!

• Use numpy and other library

functions whenever possible

• Use dense array representations

• Avoid python iterators

• Avoid indexing numpy arrays

34

Example

Runtime Comparison:

Native ≈ Numpy dense (15us)

< Numpy strided (37us ≈ 2.5x)

< Python iterator (753us ≈ 50x)

< Python naive (1234us ≈ 80x)

Vectorize, vectorize, vectorize!

• Use numpy and other library

functions whenever possible

• Use dense array representations

• Avoid python iterators

• Avoid indexing numpy arrays

34

	Python Review: Basics and Tools
	Better Python: Writing ``Pythonic'' Code
	Faster Python: Understanding Python Performance

