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Real Time 3D Scene Capture using NeRFs

Description NeRFs, or Neural Radiance Fields, are a method to create a
3D model of an object or scene by learning an implicit representation
from a number of training images. Recent work has accelerated NeRF
training from hours or even days down to seconds, which could
potentially enable using NeRFs for real time scene capture.

Our objective is to explore the potential to use NeRFs for real time scene
capture, which may involve modifying existing NeRF architectures,
designing novel training pipelines, or integrating LIDAR-based volumetric
video capture.

Skills Students should be proficient with Python. It will be helpful to
have some exposure to CUDA and be familiar with deep learning
frameworks.

Contact tianshu2@andrew.cmu.edu
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Deep Learning Frameworks

Pytorch Tutorial
e Pytorch Example

Disclaimer: this lecture will not appear on your final exam, though some
content, in particular PyTorch, will be used on Homework 7.



Deep Learning Hardware



The Problem with CPUs

Neural networks require lots of parallel computations, but CPUs require
instructions to be executed sequentially.

How can we speed up computations?

e More cores: lots of overhead (Intel Xeon Phi, discontinued in 2020)

e More execution units, longer pipeline: requires sophisticated
out-of-order execution, branch prediction, etc; doesn't scale

e SIMD instructions (AVX): you still carry around the baggage of the
CPU architecture; can't easily make vectors huge

CPUs don't scale, and can only get you so far.



Graphics Cards

Graphics Cards: a card that connects to a display to show graphics.

Source: https://www.techpowerup.com/gpu-specs/nvl.c2015


https://www.techpowerup.com/gpu-specs/nv1.c2015

Graphical Processing Units

Nvidia GeForce 256 "Transforming and Lighting engine”: compute
shaders — pretty much just SIMD code execution!
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Source: https://uwu. techspot . con/article/650-history-of-the-gpu/. Slide from SIGGRAPH Asia 2008


https://www.techspot.com/article/650-history-of-the-gpu/

General Purpose GPUs

Nvidia and AMD embraced the “General Purpose GPU" paradigm for
computer graphics:
e Organization of the GPU into Streaming Multiprocessors (SMs)

e “Nvidia realized that more cores running at a slower speed are more
efficient for parallel workloads than fewer cores running at twice the

frequency.”

Source: https://www.techspot.com/article/659-history-of-the-gpu-part-4/


https://www.techspot.com/article/659-history-of-the-gpu-part-4/

Modern GPU Architecture

Nvidia RTX A100: ~ $30000; 108 SMs

Source: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf


https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
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We are executing a dense layer with
batch size 256 and 4096 hidden
units = 220 parallel.

1. Spawn 2?° threads.

2. Split threads into 4096 blocks of
256 threads.

3. Each SM gets assigned a block,
and divides it into 8 warps of 32
threads.

4. These warps are sent to Warp
Sechedulers that execute the
instructions using 16 int32 units,
16 fp32 units, 8 fp64 units, and 1
tensor core.

Total data parallelism: 6912



GPU vs CPU

Device Current Price | Floating Point | Power (TDP)
Nvidia A100 80GB ~ $30000 156 TFlops 400W
Nvidia RTX A6000 ~ $6000 38.7 TFlops 300W
AMD EPYC 7713 ~ $7000 4.1 TFlops 2256W
Nvidia RTX 3090 ~ $2000 35.6 TFlops 350W

Nvidia GTX 970 $150 used 3.9 TFlops 150W

Specs from https://www.techpover

up.com/. Prices reflect current market prices as of March 2022.



https://www.techpowerup.com/

GPU vs CPU
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Source: https://arxiv.org/pdf/1911.11313.pdf
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https://arxiv.org/pdf/1911.11313.pdf

More than just “More Cores”

Tensor Cores for 4x4 “Generalized Matrix Multiply”:
GEMM(A, B, C) = AB + C. For example, if we multiply 2 8x8 matrices:

A A
Ay Ax

Bii B
By Bx»

A11B11 + A2Bo1 A1 Bio + AaBax
AxBi1 + AnBai AxBio + AnBa |’

where A11 811 + A12821 = GEMM(AH, 8117 GEMM(AQ, 812, 0))
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https://jonathan-hui.medium.com/ai-chips-a100-gpu-with-nvidia-ampere-architecture-3034ed685e6e

More than just “More Cores”

Tensor Cores for 4x4 “Generalized Matrix Multiply”:
GEMM(A, B, C) = AB + C. For example, if we multiply 2 8x8 matrices:

Auin Al |Bii B _ A11B11 + A2Bo1 A1 Bio + AaBax
Ay Ax| |Ba B A1Bi1 4 A2 Bo1 A Bio 4 A2 By
Where A11 Bll + A12821 = GEMM(AH, 8117 GEMM(AQ, 812, 0))

Data Types specifically for deep learning:

SPARSE
X-factor | SPARSE | X-factor
INPUT OPERANDS ACCUMULATOR TOPS |vs. FFMA | TOPS | vs. FFMA

FP32 mmmwmmmmmm FP32

FP16 FP32  mmmmmmmmmmm 125

FP32 o FP32  commosmmmmmmm 19.5 1x

TF32 oo FP32  ammemmmmmm 156 8x 312 16x

FP16 oo FP32 oo 312 16x 624 32x

BF16  ommmmm FP32  commmmmmmmmmmmm 312 16x 624 32x
Y} FP16  oomommm FP16 oo 312 16x 624 32x

INT8  omm INT32 OO 624 32x 1248 64x

INT4 m INT32 ommmmmmmmmmm - 1248 64x 2496 128x

BINARY 0 INT32 o 4992 256x - -

IEEE FP64 19.5 1x

Source: https://jonathan-hui.medium.com/ai-chips-a100-gpu-with-nvidia-ampere-architecture-3034ed685e6e
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https://jonathan-hui.medium.com/ai-chips-a100-gpu-with-nvidia-ampere-architecture-3034ed685e6e

A Typical Deep Learning Pipeline

Disk CPU / Main GPU
Memory
e The CPU is usually used ,—‘—|
. Load
for data preprocessing Forward
only. Preprocess
e All parameter and Backward
gradient computations Update
take place on the GPU Load i .
. orwar
e Data loading and
. Preprocess
preprocessing should be
T . Backward
pipelined to avoid
impacting runtime. Update
v v l
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A Typical Deep Learning Machine

System memory: dataset

CPU: preprocessing

GPU: everything else

Batch-parallel training
(GPUO gets the first half,
GPU1 gets the second half)

13



An Atypical Deep Learning Machine

HDR InfiniBand PCI Express 4.0 xGMI-2 NVLink 3.0
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Figure 2: Architecture diagram of a single training node.

We trained GPT-NeoX-20B on twelve Supermicro AS-4124GO-NART servers, each with eight NVIDIA
A100-SXM4-40GB GPUs and configured with two AMD EPYC 7532 CPUs. All GPUs can directly access
the InfiniBand switched fabric through one of four ConnectX-6 HCAs for GPUDirect RDMA. Two NVIDIA
MQMB8700-HS2R switches—connected by 16 links—compose the spine of this InfiniBand network, with one
link per node CPU socket connected to each switch. Figure 2 shows a simplified overview of a node as
configured for training.
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Aside: Why not AMD?

AMD GPUs are not usually used, and for the most part cannot be used
with deep learning frameworks!

e No hardware optimization for deep learning (Tensor Cores,
ML-specific data types)
e No software support (CUDA, cuDNN, etc)

e Poor community adoption due to poor historical performance

15



Deep Learning Frameworks




Before Pytorch

What we used to do:

e LeNet, 1989: custom compiled code (most likely C or Fortran)
e AlexNet, 2012: custom CUDA code

e Early Deep Learning “Boom™: early frameworks such as Caffe,
Theano

e Recent deep learning: Tensorflow vs Pytorch

16



Modern Frameworks

Tensorflow: the first “Modern” deep learning framework.

e (TF 1) Build, compile, then execute compute graph

e (TF 2) This is too annoying, let's add “eager execution” instead

17
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e Optimize overhead for eager execution, and don't worry about
compiling graphs

e ... Maybe we still want that performance of graph execution
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Modern Frameworks

Tensorflow: the first “Modern” deep learning framework.

e (TF 1) Build, compile, then execute compute graph

e (TF 2) This is too annoying, let's add “eager execution” instead
Pytorch: easier to use than tensorflow

e Optimize overhead for eager execution, and don't worry about
compiling graphs

e ... Maybe we still want that performance of graph execution
JAX: built from the ground up to use a JIT approach

e Much more intuitive than Pytorch and Tensorflow

e New and not yet mature, missing a lot of tooling
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Choosing a Framework: Pytorch vs Tensorflow vs JAX

When to use...

e JAX: you work for Google, or have connections at Google.

18
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e Tensorflow: you have TPUs or want to easily deploy your model
using Tensorflow Lite.
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Choosing a Framework: Pytorch vs Tensorflow vs JAX

When to use...

e JAX: you work for Google, or have connections at Google.

e Tensorflow: you have TPUs or want to easily deploy your model
using Tensorflow Lite.

e Pytorch: everyone else.

... though if you use high level APIs such as Flax, Keras, torch.nn, there
is little difference between the frameworks.

18



Pytorch




Three main components:

e GPU Computation (on torch.Tensor), which can use eager
execution (default) or graph execution (torch.jit)

e Automatic Differentiation (torch.autograd)

e High level neural network APl (torch.nn, torch.optim,
torch.utils.data)

19



Plain Numpy

5 N, D_in, H, D_out - 64, 1000, 100, 10

X np.random.normal(siz D_in))
. . . y = np.random.normal(size D_out))
Numpy implementation of regression wl = np.random.normal(size=(D_in, H))

1 w2 = np.random.normal(size=(H, D_out))
5 learning_rate = le-6

using a neural network with 2 layers,
trained with Gradient Descent

7 losses = []
t in range(100):

h = np.matmul(X, wl)
h_relu = np.maximum(h, @)
16 y pred = np.matmul(h relu, w2)
loss = np.sum(np.square(y pred - y))
14
grad_y pred = 2 * (y_pred - y)
1z 15 grad_w2 = np.matmul(h_relu.T, grad y pred)
grad_h_relu = np.matmul(grad_y pred, w2.T)
10 7 grad_h = np.copy(grad_h_relu)
grad_h[h < 8] = @
3 1 grad_wl = np.matmul(X.T, grad_h)

wl = wl - learning rate * grad wl
w2 = w2 - learning rate * grad w2

losses.append(loss)

plt.plot(np.log(losses))

20



Plain Numpy

Ordinary Arrays
on CPU

Forward Pass

Backward Pass

Parameter Update

N, D_in, H, D_out = 64, 1000, 100, 10

= np.random.normal(size=(N, D_in))
= np.random.normal(size=(N, D_out))

3 wl = np.random.normal(size=(D_in, H))
1 w2 = np.random.normal(si H, D_out))

learning_rate = le-6

7 losses = []

for_t in ran :
h = np.matmul(X, wl)
h_relu = np.maximum(h, )
y_pred = np.matmul(h_relu, w2)
loss = np.sum(np.square(y_pred - y))

grad_y pred = 2 * (y_pred - y)

grad_w2 = np.matmul(h_relu.T, grad_y pred)
grad_h_relu = np.matmul(grad_y pred, w2.T)
grad_h = np.copy(grad_h_relu)

grad_h[h < 0] = 0

grad_wl = np.matmul(X.T, grad_h)

wl = wl - learning_rate * grad_wl
w2 = w2 - learning rate * grad w2

losses.append(lo:

plt.plot(np.log(losses))

21



GPU Computation

1 device = torch.device( ' cud
print(device)

torch.randn(N, D_in, device=device)
> torch.randn(N, D_out, device=device)
6 wl = torch.randn(D_in, H, device=device)
torch.randn(H, D_out, device=device)
arning_rate = le-6

10 losses = []
t in range(100):

Replace numpy with torch (with h = torch.matmul(X, wl)
X h_relu = torch.clamp(h, min=@)
a few exceptions where the y_pred = torch.matmul(h relu, w2)

. loss = torch.sum(torch.square(y _pred - y))
function names change)
grad_y pred = 2 * (y pr -y)

grad_w2 = torch.matmul(h_relu.T, grad_y_pred)
grad_h_relu = torch.matmul(grad_y_pred, w2.T)
grad_h = torch.clone(grad_h_relu)

grad_h[h < @] =0

grad_wl = torch.matmul(X grad_h)

wl = wl - learning_rate * grad wil
w2 = w2 - learning_rate * grad w2

losses.append(loss.cpu().numpy())
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GPU Computation

torch.devi

CUDA = Nvidia GPU

torch.randn(N,
Arrays sent torch.randn(N, D_out, devic
to GPU wl = torch.randn(D_in, H, devic
w2 = torch.randn(H, D_out, device=device)
8 learning_rate = le-6

losses = []
for t in range(100):
h = torch.matmul(X, wl)
h_relu = torch.clamp(h, min=0)
y_pred = torch.matmul(h_relu, w2)
loss = torch.sum(torch.square(y pred - y))

grad_y pred = 2 * (y_pred - y)

grad_ w2 = torch.matmul(h_relu.T, grad_y pred)
grad_h_relu torch.matmul(grad_y pred, w2.T)
grad_h = torch.clone(grad_h_relu)

grad_h[h < 0] = 0

grad_wl = torch.matmul(X.T, grad_h)

24 wl = wl - learning_rate * grad wl
Send the loss back 2 w2 = w2 - learning_rate * grad w2
to the CPU ;

losses.appénd{loss.cpu().numpy())

23



Automatic Differentiation

Pytorch’s Automatic
Differentiation uses a
“gradient tape”
which records all
operations made on
tensors marked with

requires_grad

1 device = torch.device( 'cuda’)
2 print(device)

= torch.randn(N, D _in, device=device)
= torch.randn(N, D _out, device=device)
6 wl = torch.randn(D_in, H, device=device, requires_grad=

w2 = torch.randn(H, D_out, device=device, requires_grad=
learning_rate = le-6

® losses = []
for t in range(100):
h = torch.matmul(X, wl)
h_relu = torch.clamp(h, min=0)
y_pred = torch.matmul(h_relu, w2)
loss = torch.sum(torch.square(y pred - y))

loss.backward()

with torch.no_grad():
wl -= learning_rate * wl.grad
w2 -= learning_rate * w2.grad
wl.grad.zero_()
w2.grad.zero_()

losses.append(loss.detach().cpu().numpy())




Automatic Differentiation

1 device = torch.device('cuda‘)
2 print(device)

= torch.randn(N, D_in, device=device)
» y = torch.randn(N, D_out, device=device)
Record gradients ) = torch.randn(D_in, H, device=device, requires_grad=
for the Welghts = torch.randn(H, D_out, device=device, requires_grad=
8 learning_rate = le-6

losses = []

or t in range(100):
h = torch.matmul(X, wl)
h_relu = torch.clamp(h, min=0)
y_pred = torch.matmul(h_relu, w2)

)
and it's loss = torch.sum(torch.square(y_pred - y))

like magic

Don’t track == -

. ) orch.no_grad():
gradlents when 2 learning_rate * wl.grad
Updating params g -= learning_rate * w2.grad

.grad.zero_()
.grad.zero_()

Don’t send g
gradlent to CPU p) losses.append(loss.detach().cpu().numpy())




High Level API: torch.nn

1 device = torch.device('cuda’)
2 print(device)

torch.randn(N, D_in, device=device)
torch.randn(N, D out, device=device)
6 learning_rate = le-2

g model = torch.nn.Sequential(
Instead of manually g torch.nn.Linear(D_in, H),
. torch.nn.ReLU(),
constructing each layer’ torch.nn.Linear(H, D out)).to(device)
activation, initialization,
3 losses = []
14 for t in range(100):
layers y_pred = model(X)
5 loss = torch.nn.functional.mse_loss(y_pred, y)
loss.backward()

etc, use pre—constructed

with torch.no_grad():
for param in model.parameters():
param -= learning_rate * param.grad
model.zero_grad()
losses.append(loss.detach().cpu().numpy())




High Level API: torch.nn

You will implement
something similar in
HW5 Q3

Send model to GPU

The model provides
a convenient way to
iterate over its
parameters

1 device = torch.device('cuda")

2 print(device)

1 X = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
> learning_rate = le-2

g model = torch.nn.Sequential(

torch.nn.Linear(D_in, H),
torch.nn.RelLU(),

torch.nn.Linear(H, D _out)]).to(device)

t in range(100):

y_pred = model(X)

loss = torch.nn.functional.mse_loss(y_pred, y)
loss.backward()

with torch.no_grad():
for param in model.parameters():
param -= learning_rate * param.grad
model.zero_grad()
losses.append(loss.detach().cpu().numpy())




High Level API: torch.optim

1 device = torch.device('cuda')
2 print(device)

= torch.randn(N, D_in, device=device)
= torch.randn(N, D _out, device=device)
6 learning_rate = le-2

model = torch.nn.Sequential(
torch.nn.Linear(D_in, H),
Let's get rid of 0 torch.nn.RelU(),
. torch.nn.Linear(H, D_out)).to(device)
that last bit of 12 optimizer = torch.optim.SGD(model.parameters(), lr=learning rate)

handwritten =

training code ... 15 for t in range(10@):
16 y_pred = model(X)
loss = torch.nn.functional.mse loss(y pred, y)
loss.backward()

optimizer.step()
optimizer.zero_grad()
losses.append(loss.detach().cpu().numpy())

24 plt.plot(np.log(losses))




High Level API: torch.utils.data

1 from torch.utils.data import TensorDataset, Dataloader
2

3 device = torch.device( cuda')

4 print(device)

6 X = torch.randn(N, D_in, device=device)
y = torch.randn(N, D out, device=device)
learning_rate = 1e-2

loader = Dataloader(TensorDataset(X, y), batch_size=16)
model = torch.nn.Sequential(
torch.nn.Linear(D_in, H),

Use DataLoader to AT ),

pipeline data |oading torch.nn.Linear(H, D_out)).to(device)

optimizer = torch.optim.sGD(model.parameters(), lr=learning_rate)
and preprocessing ) .
osses =
8 for epoch in range(25):
for x_batch, y batch in loader:

y_pred = model(x_batch)
loss = torch.nn.functional.mse_loss(y_pred, y batch)
loss.backward()

optimizer.step()
optimizer.zero grad()

losses.append(loss.detach().cpu().numpy())

8 plt.plot(np.log(losses))




Pytorch Example




Google Colab

» pytorch-intro.ipynb
File Edit View Insert Runtime T Notebook settings

+ Code + Text Run all Cti+F9
Run before Ctri+F8 Hardware accelerator
Run the focused Ctri+Enter GPU v

Run t Ctri+Shift+Enter

matplot1
Ctri+F10

N, D_in,

Interrupt ex M1
Restart runtime ctri+M

Restart and run all Want your notebook to keep runi

a k8@ et runtime

close your browser?

Change runtin

Man [:] Omit code cell output when saving this notebook

View runtime lo

Cancel
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Recitation & HW5

HW5 Release on Monday

e Start early!

Recitation:

e Deeper dive into the Pytorch Example
e Backpropagation Walkthrough
e Vectorization, Numerical Stability, and Debugging Tricks
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