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Gradient Descent
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(Mini-batch Stochastic) Gradient Descent
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(Mini-batch Stochastic) Gradient Descent
is Distributed?

What's the Problem?
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Aside: How is Large-Scale Learning Done Today?

HDR InfiniBand PCI Express 4.0 xGMI-2 NVLink 3.0
EleUtherAI: G PT-N eox-zo B 50 GT/s per lane 16 GT/s per lane 16 GT/s per lane 400 GT/s per lane
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® SOGT/S X8 |inks to SWitCheS With Switchg | Switchy Switchg | Switchy
. 16x 16x 16x 16x
50GT/s x16 interconnect . i P s
[PLX| [PLX] |PLX|  [PLX]|
Synchronous AdamW HCAq[+——* f—»\ HCA,| [HCA, }<—f f t_JHCA,
e 20B params x 16 bit @ 400GT/s T ks R BT
~1s |GPUy| |GPU,| |GPU,] |GPU3 GPU, | |GPU5 |GPUs|  |GPU;|
e 1830 hours/ 150k steps ~44
seconds per step |NVSwitchg | |NVSwitchy |~ |NVSwitchy|  |NVSwitchs|  |NVSwitchs| | NVSwitchs |

Figure 2: Architecture diagram of a single training node.

We trained GPT-NeoX-20B on twelve Supermicro AS-4124GO-NART servers, each with eight NVIDIA

A100-SXM4-40GB GPUs and configured with two AMD EPYC 7532 CPUs. All GPUs can directly access

1 2 X 8 X A1 00 GPUS ~$1 M the InfiniBand switched fabric through one of four ConnectX-6 HCAs for GPUDirect RDMA. Two NVIDIA
. MQMS8700-HS2R switches—connected by 16 links—compose the spine of this InfiniBand network, with one

ZX MQM8700'HSZR SW|tCheS ~$40k link per node CPU socket connected to each switch. Figure 2 shows a simplified overview of a node as

configured for training.
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Distributed SGD (circa 2015)

Communication Cost: Stragglers:
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Distributed SGD (circa 2015)

Communication Cost: Local Update SGD
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Distributed SGD (circa 2015)

Communication Cost: Local Update SGD
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Distributed SGD (circa 2023)

Reinforcement Learning

e Highly variable episode
length

e Convergence speed is
critical

https://everydayrobots.com/thinking/scalable-
deep-reinforcement-learning-from-robotic-ma

nipulation Carnegie
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Federated Learning

Algorithm 1 FederatedAveraging. The K clients are
indexed by k; B is the local minibatch size, F is the number
of local epochs, and 7 is the learning rate.

Server executes:
initialize wy
for eachroundt =1,2,... do
m <+ max(C - K, 1)
S; < (random set of m clients)
for each client k € .S in paralle] do

‘Efﬂ < ClientUpdate(k, w )] | OF mow S6eD Sk,/:s
W@’ s Wil ) g Wi

W’S% ClientUpdate(k, w): // Run on client k
B < (split Py, into batches of size B)
for each local epoch i from 1 to £ do
for batch b € B do
w < w —nVl(w;b) .
return w to server g/[all'flegle
e1ion

University
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Federated Learning vs Distributed SGD

g
Federated Averaging Local Update SGD
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Why Federated Learning?

Advantages Disadvantages
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Research Topics in Federated Learning
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Federated Learning: What could go wrong?

Data & Model Concerns Edge Systems Concerns
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Applications & Challenges in Federated Learning

“First Order” Challenges:

e Data Heterogeneity
e Compute Heterogeneity

“Second Order” Challenges:

e Communication cost / scalability
e Defense against attacks

Carnegie
Mellon
University




Data Heterogeneity (“Non-IID")

What could go wrong?
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Data Heterogeneity (“Non-IID")
Vet 1A - Zoaiy

What could go wrong?
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Data Heterogeneity (“Non-IID")

What could go wrong?
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Approaches to Data Heterogeneity

Client selection (“Client Selection in
Federated Learning: Convergence
Analysis and Power-of-Choice Selection
Strategies”, 2020)

. Sample the Candidate Client Set. The central server samples a candidate set A of d (m < d <

K) clients without replacement such that client k is chosen with probability py, the fraction of
data at the k-th client for k =1,... K.

. Estimate Local Losses. The server sends the current global model w® to the clients in set A,

and these clients compute and send back to the central server their local loss Fj, (W(”>).

. Select Highest Loss Clients. From the candidate set .4, the central server constructs the active

client set S by selecting m = max(CK, 1) clients with the largest values F} (W), with ties
broken at random. These S clients participate in the training during the next round, consisting
of iterations t + 1, t + 2, ...t + 7.

SCAFFOLD (“Stochastic Controlled
Averaging for Federated Learning”,
2023)

Regularization (FedProx) (“Federated
Optimization in Heterogeneous
Networks"”, 2018)

FedProx
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https://arxiv.org/pdf/1812.06127.pdf
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Compute Heterogeneity

B. Problem Formulation

Client Selection (FedMCCS) (2021) ~ We formulate our problem as a bilevel maximization with
knapsack and other constraints as follows:

Select as many clients max |Xg|
as possible, such that: Xs
subject to

(1) we do not exceed the
resource budget

- XZ XZ
VX > Utl,” < Budget,”[co]

re{CPU,Memory,Energy}

Z b ‘XZ 4
(2) we do not exceed the round VXfo':l Z(T:;f' + UtllriTud Al T:lf ) < T|cor]
time subject to Percent of “abnormal” samples
(3) selection also maximizes clients max ERy. = ‘sz'lA‘ % 100 [[co3]. (1)
with minority classes B Isz'lA| 4 |sz,lN|
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Heterogeneity: Federated Learning @ Google
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Communication & Scalability

Hierarchical Federated Learning (2019)
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https://arxiv.org/pdf/1909.02362.pdf

Federated Learning Attacks

24

B0 svers el ochyemsaryth Q’mqoh “

Classes of FL attacks

Client or

Black or

Active or

server-side white-box passive Scigods
Sample Information Model Runtime
reconstruction inference corruption misclassification

Fig. 2. Taxonomy to classity the different types of FL attack methods

An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies (2020)
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Model Attacks (Model Replacement, Backdoors, etc)

! bgwhm Y chrren R

/:}' - 7 ‘ Good luck to YL Athens is not safe

? ’ > I love your work YL Roads in Athens are terrible
Oh man! the new movie : ) s
by YL looks great. Crime rate in Athens is high

ol e
A
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Figure 1: Illustration of tasks and edge-case examples for our backdoors. Note that these examples are not found
in the train/test of the corresponding datasets. (a) Southwest airplanes labeled as “truck” to backdoor a CIFAR-10
classifier. (b) Images of “7” from the ARDIS dataset labeled as “1” to backdoor an MNIST classifier. (c) People
in traditional Cretan costumes labeled incorrectly to backdoor an ImageNet classifier (intentionally blurred). (d)
Positive tweets on the director Yorgos Lanthimos (YL) labeled as “negative” to backdoor a sentiment classifier.
(e) Sentences regarding Athens completed with words of negative connotation to backdoor a next word predictor.

Attack of the Tails: Yes, You Really Can Backdoor Federated Learning (2020) Ca,rnegle
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https://proceedings.neurips.cc/paper/2020/hash/b8ffa41d4e492f0fad2f13e29e1762eb-Abstract.html
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Privacy Attacks (Data Recovery)
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Fig. 2: Illustration of the proposed mGAN-AI from a malicious server in the federated learning. There are /N clients, and the
vth client is attacked as the victim. The shared model at the tth iteration is denoted as M, and u} denotes corresponding
update from the kth client. On the malicious server, a discriminator D (orange) and generator GG (blue) are trained based on
the update u; from the victim, the shared model M, and representatives X, X, from each client. X,,, denotes an auxiliary
real dataset to train D on the real-fake task.
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https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8737416

Differential Privacy

Definition 1 ((€,0)-DP [24]): A randomized mechanism
M : X — R with domain X and range R satisfies (€, 5)-DP,
if for all measurable sets S C R and for any two adjacent
databases D;, D; € X,

o wast’
QMD) € 3T e . 3)

8- LB

while C; € {C1,(C2,...,Cn} do
Update the local parameters wf
w() = argmin (F;(w)) + 4 lw; — w0 =D2)

1
)as

Clip the local parameters
)
Wl([) — wl(f)/max (1, ”Wé ”)

| Add noise and upload parameters wi = wl@ + ngr)

i
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Can greatly affect performance!

Value of the Loss Function
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Why Federated Learning?
A Policy Perspective
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Machine Learning Threat Model

Threat Type | Confidentiality Integrity Availability

Threats Ussv daten &u%w wrodlel

solved by Mferenta

Federated

Learning
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Machine Learning Threat Model

Threat Type | Confidentiality Integrity Availability

Threats User data privacy
solved by

Federated

Learning

Threats Model parameter and Model backdoor attacks Model poisoning attacks
created by | architecture secrecy

Federated

Learning
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Why Federated Learning?
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Why (Not) Federated Training?

Tesla Full Self Driving Training

Edge training is hard/expensive
Users don't know about privacy
Users don't care about privacy

Data

User Actions

Y

Compression | “Vector Space”

'

FSD

!

Extract

Self Driving
Algorithm,
Inference Only

vy

Selection Policy

Send over wifi
(same time as software updates)

FSD Training
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No articles about privacy on the first page!

And people are only mildly
concerned!

(“Self-Driving Cars and Data
Collection: Privacy Perceptions of
Networked Autonomous Vehicles”,

2017)

tesla autopilot training data .4 $ Q

Google

Tools

@ ForeCer
Toyota's Woven Planet is Now Training' its Self-Driving

n Planet is Now ‘Training
ar

otive IQ

1Q News: Toyota and Tesla's Self-Driving Approach Leads to
more Affordable AVs | Automotive 1Q

@ corencive
Elon Musk Says In TED Video FSD Beta Has 100,000 Users

Bl NotaTesie App
2022.4.5.20 Official Tesla Release Notes - Software Updates

.
Bl NotaTesie App
2022.4.5.21 Official Tesla Release Notes - Software Updates
ge th or the remainder
JERVE |

nalytics insight

Want to Land Your Dream ML Job at Tesla? Here's How?

VB VentureBeat =

What is autonomous Al? A guide for enterprises
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tesla autopilot training data x| & Q

QAI @News [V

hitps:/Rowardsdatascience.com ; tesia-ai-da,
Tesla Al Day 2021 Review — Part 2: Training Data. How Does
Sep 23, 2021 — Tesla s combining manual labeling, auto labeling, and simulation to create real-
wiorld datasets for fully self-driving cars.

2021-revi

htps: com teslas-deep-| L.
Tesla's Deep Learning at Scale: Using Billions of Miles to

May 7, 2019 — Tesla's advantage in training data implies an advantage in object detection
prediction, and path planning/driving policy.

People also ask

Does Tesla Autopilot use deep leaming? v
Is Tesla self-driving machine leaming? v
Does Tesla Autopilot collect data? v
What programming language does Tesla Autopilot use? v

hitps:/fwnutesia.com

Avrtificial Intelligence & Autopilot | Tesla

Build Al training chips to power our Dojo system. Implement bleeding-edge technology from the
smallest training nodes to the multi-die training files

Autopilot - FSD Chip - Tesla Australia

() Videos

Tesla FULL self driving explained by an engineer (with Elon ..

YouTube - CNET Highiights

Aug 19, 21
10 key moments in this video =
From 02:59 From 04:57 From 06:12 From 09:48 From 11:L 2
Biological Neural Detection Problem: Per- Muiti-Cam
Visual Cortex Network Head Camera \Vector Spac
‘Wiring Backbone Detection. Predictions

Tesla Al Day

YouTube - T
(52 4 Aug 19,2021

10key momentsin

Andrej Karpathy - Al for Full-Self Driving at Tesla
‘YouTube - N



https://www.usenix.org/system/files/conference/soups2017/soups2017-bloom.pdf
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Should you use Federated Learning?

Reasons For: Reasons Against:
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Thanks!

The content for this lecture is in part from:

e Ethan Ruan's previous guest lectures for this class

e Gaurijoshi's Federated Learning Course @ CMU;
Notation + equations from her new book:
https://link.springer.com/book/10.1007/978-3-031-19067-4
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