Carnegie Mellon University

18-649 Guest Lecture: Machine Learning

Tianshu Huang — CMU WiseLab | LIONS

(1) When should I use ML / DL?

(2) How I develop and deploy ML to the edge?

This lecture brought to you by: Learning for Systems

Have some background in Machine Learning and/or systems, and interested in **using Machine Learning to understand and improve systems?**

- Understanding program resource usage
- Edge orchestration
- Handling network dropout
- And more!

Contact: tianshu2@andrew.cmu.edu

Machine Learning

Is this Machine Learning?

Machine Learning

Example: Digit Classification

- Compan ineyes - Feature expansion + examples

Machine Learning

-SM

Deep Learning

STOP DOING DEEP LEARNING

- PERCEPTRONS WERE ONLY EVER MEANT TO BE FULLY CONNECTED
- THOUSANDS OF PAPERS yet NO REAL-WORLD USE FOUND for going deeper than ONE LAYER
- Wanted to add more nonlinearity anyway for a laugh? We had a tool for that: It was called "KERNEL METHODS"
- "Yes please give me a network that can PAY ATTENTION TO ITSELF. Please give me PRETRAINED WEIGHTS for my YOLO-9000" - Statements dreamed up by the utterly Deranged

LOOK at what "Research Scientists" have been demanding your Respect for all this time, with the statistical methods & optimization algorithms we built for them

(This is REAL "Deep Learning", done by REAL "ML Engineers"):

"Hello I would like to learn 1.6 TRILLION parameters please"

They have played us for absolute fools

https://www.reddit.com/r/okbuddyphd/comments/n2m6vz/stop_doing_deep_learning/

7 Dense " "MLP"

"Fully Connected"

The Mysteries of Deep Learning

NOoO!! You have to understand Deep learning!!!

Merging Models modulo Permutation Symmetries (Ainsworth et al., 2022) Neural Networks are Decision Trees (Aytekin, 2022)

The Natural Image Manifold

The **natural image manifold** is a surface embedded in a **high dimensional space** that is:

- (1) **low-dimensional**,
- (2) highly nonlinear, and
- (3) locally smooth.

- nonlinear

ingi timoz & mage

- Weakly smooth

mage t & 2 mage

The Natural Image Manifold

The **natural image manifold** is a surface embedded in a **high dimensional space** that is:

- (1) **low-dimensional**,
- (2) highly nonlinear, and
- (3) locally smooth.

Analogy by the late Thomas S. Huang via Atlas Wang

The Natural Image Manifold

The **natural image manifold** is a surface embedded in a **high dimensional space** that is:

- (1) **low-dimensional**,
- (2) highly nonlinear, and
- (3) **locally smooth**.

Good : 13ad ' Computer Usion Saler Anything with a Auaro Processing (praphics somple manford Nature Language La Text understandy O Source Code soln. Tabular Deta

Practical Deep Learning

See **Adversarial Robustness**. Image from "Robust Physical-World Attacks on Deep Learning Models," Eykholt et al, 2018.

Pre-Trained Models & Transfer Learning

Practical Deep Learning

- Train from scratch?
- Transfer learn?
- Fully pre-trained model?

Deep Learning on the Edge

Please inspect your power cables if you own a RTX 4090, even if you don't use it for deep learning.

Deep Learning on the Edge

- Trained neural network with a given architecture
- Weights are 32-bit float
- Given power budget

f32 > i8 (Quantization) Prvning Distilation. Revolution (space, time) Offlorcing More & Flor mant

Simplest is Best

- Cloud Offloading
- Reduce input resolution
- Don't use deep learning

"ImageNet Classification with Deep Convolutional Neural Networks," Krizhenvsky et al., 2012 (AlexNet - First "true" ConvNet)

- $float32 \rightarrow float16$
- Even better: int8
- Binary is even possible

Pruning

- Pruning: Optimal Brain
 Damage (LeCun et al., 1989)
- Structured Sparsity
- Lottery Ticket
 Hypothesis

Pruning

- Pruning
- Structured Sparsity
- Lottery Ticket Hypothesis

Model

Quantization Optimized Execution

Optimal Brain Damage LeCun et al., 1989

 \cup

Adaptive Inference

- Different numbers of layers
- Different input resolution

"Convolutional Networks with Adaptive Inference Graphs," Veit & Belongie, 2018

ConvNet-AIG:

Carnegie Mellon University

. . .

TL;DR

- 1. Don't use machine learning
- 2. Don't use deep learning
- 3. Don't use deep learning on the edge (do it in the cloud)
- **4.** Don't train deep learning models (use a pre-trained model optimized for edge deployment)
- 5. Don't train deep learning from scratch (use transfer learning)
- 6. Give up (or take a machine learning class)

Additional Topics

- Distributed / federated training
- Edge Training
- GPU vs CPU vs TPU
- Deep Learning Frameworks
- Edge Deployment Frameworks (TF Lite, Pytorch Mobile)
- ML Accelerator Design
- ML Compilers
- Efficient Architectures
- Anything ML Related

